
Hi, my name is Arvid Gerstmann. And this is „The Case for Vendored Builds“.
Let‘s get started!

1



What are vendored builds? Vendored builds, also known as „vendorized toolchain“, 
or simply „vendorization“, is an often employed technique to remove dependency on 
the local development environment, by bundling absolutely all dependencies inside 
your repository. The only exception being optional development tools and the source 
control client itself.

2



But why, you might ask? By including all 3rd party code, the build system, compiler 
toolchains for each supported operating system, platform SDKs you gain a bunch of 
benefits:

3



•

•

•

•

•

•

•

Simplicity. Adding a new developer to your team is not a tedious and long task 
anymore. Setting up a new development environment simply becomes installing your 
version control systems client and cloning your repository. No other setup required.

Repeatable Builds. Since everything is inside source control, rebuilding a year old 
build, after you‘ve upgraded Visual Studio twice, becomes as easy as checking it out 
and pressing build. No more trying to find out what Windows SDK version you were 
using, or installing every old Visual Studio version. Even 10 years later, you should be 
able to build your project without any hassle.

Versioning. Upgrading a library or your compiler does not require each engineer to 
change their local environment anymore, no more fiddling with „apt-get“ to pin 
specific versions of OpenSSL or Qt5. One engineer can upgrade the compiler or library 
for everyone in the team.

Rollbacks. Found a bug in an SDK? Don‘t worry. Simply revert the commit/changelist 
introducing the upgrade. No need to manually re-install an old version.

Decoupling. By decoupling your build-environment from your locally installed IDE or 

4



compiler, engineers can use the latest and greatest IDEs, or even don‘t use an IDE at 
all and keep using Vim.

Easy CI. Ever tried to maintain a continuuos integration environment accross multiple 
build servers for a large project? Ever fiddled with a ton of .bat or .sh scripts to install 
the necessary dependencies for each machine? Spinning up new servers becomes 
easy, when the only dependency is the source control itself. You can install a near 
stock Linux or Windows image and start building your project.

You can modify 3rd party code, without worrying. It‘s often required to fix a bug, or 
change a small feature in a 3rd party SDK. By having the SDK inside your source tree, 
you don‘t need to worry about maintaining an external fork somewhere on github, 
and only pulling code from there. It‘s all in your repository.

4



Everything has a downside. And so do vendored toolchains.

5



•
•

•

•

Repository size. Due to checking in absolutely all dependencies, your build tree might 
become quite large. Especially if you dump the full dependencies naively. With a little 
bit of effort, you can trim down compiler and SDK trees by removing all unused 
executables, libraries and public documentation.

One such way is a project of mine, called „VisualStudioStandalone“, which is 
extracting just the required files for using CL.EXE. 

Although, the officially supported way, as outlined by Andrew Pardoes, is to use the 
NuGET packages, which package the full compiler toolchains for easy consumption.

Repository size is only a problem, if your repositories currently only consists of source 
files, since, for example, in the game development world, repositories contain art 
assets, which are multiple times the size of all vendored dependencies, making the 
size not an actual problem.

VCS restrictions. With a large repository size, especially in binaries or assets, comes 
the restriction of what VCS you are able to use. Everybody probably knows git, 
everybody probably used git at least once, too, since it‘s likely the currently most 

6



used VCS. But a terrible choice to use for a repository which largely consists of 
binaries, since git, due to it‘s distributed nature, keeps the whole history locally, 
which will inevitebly become quite large. Which is the reason why Perforce largely 
dominates the VCS market for game developers, with PlasticSCM coming in second.

6



There are many alternatives. Vendorization is not the only solution, for achieving 
most of the goals I described. It‘s one out of many, but it‘s the one, which is by far the 
most powerful and most convenient one.

7



Package Managers. NPM, apt-get, Conan, Pacman, et cetera are all great package 
managers, without a doubt, but they all have one major downside: they‘re an 
external dependency. Relying on an external dependency can be dangerous, anyone 
remembers left-pad? Yes, you can maintain a snapshot of packages locally, or 
internally for your company, but doing so, just adds another layer of complexity which 
needs to be maintained by someone.

8



Second dependency repository. Another common way of maintaining a bunch of 
dependencies, is to maintain them in a second „blob“ repository, which either 
contains pre-compiled binary blobs, or the latest source snapshot currently in use. 
Those are than pulled by your build system at configuration time, and used. This 
keeps the source tree clean of dependencies, and allows for the source to be kept in 
git. 
Although, while it might sound convenient, you, again, have a second repository you 
need to maintain and properly version, otherwise you‘d lose the ability to easily 
revert back to old revisions.

9



Vendored builds are not for everyone. But if you work with a large codebase, with 
many dependencies and you see yourself often figthing with them, you might wanna 
give them a try.

10



Thank you! 
Slides will be available to download from arvid.io in a couple of minutes.

11


